This website is using cookies. More info. That's Fine
Applications and Articles Applications and Articles


Studying the Impact of Dissolved and Undissolved Gas on the Performance of Peristaltic Pumps

A set of experiments illustrating how dissolved gas can affect peristaltic pumps in chromatography processes
Published in Lab Manager – July 2023
Read on

Gefahr erkannt, Gefahr gebannt

Der Feind peristaltischer Pumpen sind Gasblasen. Welchen Einfluss gelöstes und ungelöstes Gas auf die Leistung dieser Pumpen hat und damit auf HPLC, GPC & Co. und was sich dagegen unternehmen lässt, erfahren Sie in diesem Beitrag.
Published in Laborpraxis – May-June 2023
Read on

Studying the Impact of Dissolved and Undissolved Gas on the Performance of Peristaltic Pumps

Peristaltic pumps are fluid delivery tools widely used in laboratory techniques including HPLC, GPC/SEC, Flow Chemistry and Liquid Dosing. It is widely acknowledged that dissolved gas can have an impact on the performance of peristaltic pumps. A common solution to address this problem with HPLC systems, is to utilise a vacuum degasser on the inlet side of the pump.
Published in International LabMate – June 2023
Read on

Creating a better differential viscometer

Used as a GPC/SEC detector to determine the specific viscosity of a polymer or protein in solution - differential viscometers have been around for decades and have demonstrated their value in numerous applications. The R&D team at TESTA Analytical has improved the original 4-capillary bridge design and created a new generation differential viscometer with exceptional performance and operational advantages.
Read on

The importance of real time flow monitoring in Analytical labs

Backed by over 30 years of experience in the field of instrument development and device engineering, TESTA Analytical is today a leading developer and supplier of optimised detectors and instruments for liquid chromatography and flow monitoring in particular.
Published in MicroBioz India – February 2023
Read on

Investigating Variation in Flow from Peristaltic Pumps

With peristaltic pumps, several flow paths can be operated simultaneously. However, many parameters influence the actual flow rate in each channel. Accurate determination of the individual flow rate in the individual channels is crucial for reproducible results.
Published in LAB Worldwide – February 2022
Read on

Investigating Variation in Flow from Peristaltic Pumps

Peristaltic pumps find wide application in modern labs, they are considered inexpensive, easy to use and to maintain and, most important of all, are extremely reliable and flexible. The range of application is huge, from simple transfer of a liquid from one container to another in HPLC and Ion chromatographs, to more complex usage as dispensing tools for reagents in flow chemistry.
Published in MicroBioz India – June 2022
Read on

The Importance of Understanding Pump Flow

Pumps are one of the most common tools enabling liquids to be moved, delivered, pushed through a separation column, supplied as a dose or transferred from one container to another. Several different pumping technologies are available to choose from, depending on your application or problem. As you might expect - a pump designed to pump crude oil through a pipeline has very different requirements compared to a pump designed to deliver a constant stream of medication into a patient's vein. As such, the term ‘flow’ can be interpreted very differently, depending on the context.
Published in International LabMate – July 2022
Read on

Alles stabil und im Flow?

Mithilfe von peristaltischen Pumpen lassen sich mehrere Förderwege gleichzeitig betreiben. Doch viele Parameter beeinflussen die tatsächliche Durchflussrate in jedem Kanal. Die genaue Bestimmung des individuellen Durchflusses ist für reproduzierbare Ergebnisse entscheidend.
Veröffentlicht in Laborpraxis – July-August 2022
Read on

Real-Time Monitoring of HPLC Pump Performance

High Performance Liquid Chromatography (HPLC) is nowadays one of the most widely used techniques in analytical chemistry. The range of applications soluble using HPLC covers a vast range of sample types, concentrations, and compositions. This extreme flexibility is achieved by using specific columns carefully designed for each particular investigation...Read More

How Enhanced Detector Stability Leads to Improved GPC/SEC Results

GPC (Gel Permeation Chromatography) or SEC (Size-Exclusion-Chromatography is widely acknowledged as one of the most useful characterization methods in polymer science. The technique offers the possibility to determine molecular weight distribution and its averages, to provide a complete picture of the polymer sample under investigation...Read More

High Performance GPC/SEC System

Gel-permeation chromatography (GPC) coupled with Multi-Angle Static Light Scattering (SLS) is a modern and powerful technique for determining absolute molecular weight values without the need to rely on traditional column calibration... Read More

Why is Flow Rate Important in GPC/SEC?

To obtain reliable data from your GPC/SEC instrument - each run should be related to a calibration curve obtained by measuring appropriate chromatographic standards. Calculations from GPC/SEC experiments are based on elution volume, which is a product of time and flow rate...Read More

Common detectors for GPC/SEC Chromatography

This on-line presentation provides an overview about the detectors most commonly used in GPC/SEC applications, explains differencies... See Presentation